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Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such
as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping
into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global
convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm
integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem.
The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from
time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP
instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of

solution quality.

1. Introduction

One of the most popular combinatorial optimization prob-
lems is the traveling salesman problem (TSP) [1]. Given a set
of cities, a salesman attempts to find the shortest or at least
near to the shortest tour by visiting each city only once and
turning back to the starting city. TSP is a representative of
variety of combinatorial problems. It has been studied for
the last 40 years. It has many real world applications such as
the movement of people, postal delivery, school bus routes,
garbage collection, design of hardware devices and radio
electronic systems, machine scheduling, integrated circuits,
and computer networks [2-4].

Metaheuristic algorithms are formally defined as algo-
rithms that inspired by nature and biological behaviors.
They produce high-quality solutions by applying a robust
iterative generation process for exploring and exploiting the
search space efficiently and effectively. Recently, metaheuris-
tic algorithms seem to be a hot and promising research areas
[5]. They can be applied to find near-optimal solutions in
a reasonable time for different combinatorial optimization
problems [6].

Metaheuristic algorithms such as genetic algorithms
(GAs) [7], particle swarm optimization (PSO) [8], tabu
search (TS) [7], simulated annealing (SA) [9], and ant colony
optimizations (ACO) [10] are widely used for solving the TSP.
Ant colony optimization proposed by Dorigo et al. in 1996
[10] simulates the intelligent behavior of real ants seeking for
the food in nature. It has been successfully applied to solve
many optimization problems such as TSP [10], quadratic
assignment [11], job-shop scheduling [12], and load balancing
in telecommunications networks [13].

In applying standalone metaheuristic algorithms, there is
possibility of losing the diversity of the population through
premature convergence and thus the algorithm gets stuck in
local optima. Therefore, maintaining the diversity and mak-
ing tradeoff between diversification and intensification by
combining two or more algorithms to produce high-quality
solutions and speed up the execution time is indispensable
[14].

For hybrid ACO, the earliest study was conducted by
McKendall and Shang [15]. They presented a hybrid ant
system algorithm to solve dynamic facility layout problem.
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Another research was a hybrid ant system algorithm for solv-
ing TSP in which ant colony, genetic algorithm, and simulated
annealing are hybridized [16]. For the hybrid ant colony
system (ACS), many researches were conducted including
the work by Huang and Liao [17], Yoshikawa and Otani [18],
Xing et al. [19], Liao et al. [20], Lin et al. [21], Hajipour
et al. [22], and Min et al. [16]. The research by Katagiri et
al. [23] is an example for hybrid MAX-MIN Ant System.
To solve TSP problems, several hybrid ACO variants with
other metaheuristic algorithms such as SA, PSO, ACO, ABC,
and ANN were proposed. Bontoux and Feillet [24] proposed
a hybrid ACO algorithm with local search procedures to
solve TSP. Tsai et al. [25] presented a hybrid ACO called
ACOMAC algorithm for solving TSP. Beam-ACO algorithm
is a hybrid ACO with beam search for solving TSP [26]. Chen
and Chien presented a hybrid algorithm, called the genetic
simulated annealing ant colony system with particle swarm
optimization techniques, for solving TSP [27]. Jungiang and
Aijia proposed a hybrid ant colony algorithm (HACO),
which combined ACO with delete-cross to overcome the
shortcoming of slow convergence speed of ACO [28]. Dong
et al. [29] proposed an algorithm, called cooperative genetic
ant system (CGAS) for solving TSP, which hybridized both
GA and ACO to improve the performance of ACO. Recently,
Giindiiz et al. [30] presented a hybrid ACO with ABC
for solving TSP. In addition, Mahi et al. [31] proposed a
new algorithm in which ACO was hybridized with PSO
and 3-Opt for solving small TSP instances. The PSO was
used to determine the optimum values of the two main
parameters of ACO which affected algorithm performance
and the 3-Opt was used to escape from the local optima found
by ACO algorithm. Furthermore, Yousefikhoshbakht et al.
[32] proposed REACSGA for solving small TSP instances
which employed the modified ACS for generating initial
diversified solutions and GA for intensification mecha-
nisms.

As noted above, previous studies show that ACO still
has drawbacks. The performance of these studies was dra-
matically decreased when dealing with large-scale instances.
To the best of my knowledge, no research has been done
to hybridize elitist ant system with SA, mutation, and local
search. Therefore, in this research a new hybrid elitist ant sys-
tem with SA, mutation operator, and local search procedure is
introduced for solving TSP. Introducing SA can help ACO to
escape from the local optima. On the other hand, determining
initial solution of SA is almost difficult. Therefore, the use of
the ACO is useful in the generation of SA initial solution.
While introducing the mutation operation to ACO algorithm
will enhance the algorithm performance, expand the diversity
of population, and inhibit the premature convergence. Apply-
ing either SA or mutation is based on the diversity level of the
population. After applying SA or mutation, elitist ant system
goes through alocal search procedure to speed up the conver-
gence.

The rest of the paper is structured as follows. Sec-
tion 2 presents the TSP formulation. Section 3 describes the
hybrid algorithm. The experimental results are presented in
Section 4. Conclusions and future work are given in Sec-
tion 5.
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2. Traveling Salesman Problem

TSP is an active field of research in computer science. It
demonstrates all the aspects of combinatorial optimization
and comes under the set of NP-hard problems which cannot
be solved optimally in a polynomial time [33]. Solving TSPs is
an important part of applications in many practical problems
within daily live [2-4].

TSP is represented as a connected graph G, consisting
of a set of vertices V, an edges set E, and a set of distances
d associated with each edge in E and stored in a distance
matrix D. The value d;; is the cost of traversing from vertex
i € Vtovertex j € V and the diagonal elements d;; are
zeros. Given this information, a tour in TSP is formulated as
a cyclic permutation, called Hamiltonian cycle of G visiting
each vertex in the graph exactly once, w of {1, 2, ..., n}, where
n(i) is the city, on the tour, following city (i). The aim in
solving TSP is to find a permutation 77 that minimizes the
length of the tour as shown in

n
minimize Zdiﬂ(i)' )
i=1

It is worth mentioning that the total number of possible
distinct feasible routes covering all cities n is (n — 1)!/2. This
produced a problem which is very hard to solve (NP-hard
problem).

3. Algorithm Design

An overview of the ACO, SA, mutation operator, and the
proposed algorithm is presented in the following subsections.

3.1. Ant Colony Optimization. ACO is a population-based
metaheuristic algorithm which was inspired by the foraging
behavior of the real ants when searching for the shortest path
from the food source to their nest. Analogically, the artificial
ants search for good solutions iteratively in several gener-
ation. In each generation, every ant constructs its feasible
solution path step by step guided by a transition rule that is
a function of artificial pheromone and distance between two
cities (heuristic information) [34] as shown in (2). After that,
the ant lays down an amount of pheromone trail on the edges
of its completed tour. In the next generation, ants are attracted
by the pheromone trail. Therefore, this will guide the search
in the search space towards good quality solutions.

TSP is identical to the foraging behaviors of real ants in
nature. Therefore, applying ant colony optimization to solve
TSP will be very simple. Equation (2) is used to calculate the
probability of selecting city j by ant k to be visited after city i.
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where 7;; denotes the amount of pheromone between city i
and city j, #;; indicates the distance between city i and city
j (priori available heuristic information), f3 is the parameter
that represents the relative importance of the pheromone
(dynamic evaluation) versus the heuristic value (static



Computational Intelligence and Neuroscience

evaluation), and N lk is a set of cities which ant k has not yet
visited. Therefore, the selection probability is proportional to
the product of the static and dynamic evaluation.

In the dynamic evaluation, two pheromone update rules
are used to calculate the amount of pheromone on each edge
between cities. The first rule is called the local update rule as
shown in

7, (t+1) = (1-p)7; (8) +;Ar§; ), (3)

where 0 < p < 1 is the pheromone trail evaporation rate in
local update rule and m is the number of ants. Thus, the local
update rule is decreasing the pheromone trails by a constant
factor (pheromone evaporation). The second rule is the global
update rule which adds extra amount pheromone trail to the
best route in the population. It is worth mentioning that the
best route is the shortest route as in elitist strategy [10], the
extended version of original ant system algorithm. Equation
(4) shows the definition of the global update rule in elitist ant
system:

e
—— ifedge(i, i) e T®

Arg." (t) = {1 L (v) ge (i) (4)
0 otherwise,

where T# is the best route, L8(¢) is the distance of the best
route, and e is a positive integer. This means that the edges
belonging to the global-best tour get an additional amount of
pheromone each time the pheromone is updated.

The pseudocode of the basic ACO is illustrated in Algo-
rithm 1.

3.2. Simulated Annealing. SA is a trajectory-based optimiza-
tion technique. It is basically an iterative improvement strat-
egy with a criterion that accepts higher cost configurations
sometimes. The first attempt to apply SA for solving the
combinatorial optimization problems was in the 80s of the
last century [35, 36]. An overview of simulated annealing, its
theoretical development, and application domains is shown
in [9]. Simulated annealing was inspired by physical anneal-
ing process of solids in which a solid is first heated and
then cooled down slowly to reach a lower state of energy.
Metropolis acceptance criterion [37], which models how
thermodynamic systems moves from one state to another
state, is used to determine whether the current solution is
accepted or rejected.

The original Metropolis acceptance criterion was that
the initial state of a thermodynamic system was chosen at
energy G and temperature T. Holding T' constant, the initial
configuration of the system is perturbed to produce new
configuration and the change in energy AG is calculated.
The new configuration is accepted unconditionally if AG
is negative whereas it is accepted if AG is positive with a
probability given by the Boltzmann factor shown in (5) to
avoid trapping in the local optima:

exp—ACost/Temperature ) (5)

This processes is then repeated until reaching a good sam-
pling statistics for the current temperature, and then the

temperature is decreased and the process is repeated until
a frozen state (free energy state) is reached at T = 0.
The analogy between the states of a physical system and
optimization problems is given as follows: (i) the current
configuration of the thermodynamic system is similar to
the current solution of the optimization problem; (ii) the
thermodynamic system energy is similar to the objective
function of optimization problem; and (iii) ground status of
the thermodynamic system is similar to the global minimum
of the optimization problem. Algorithm 2 shows the general
structure of SA.

3.3. Mutation Operator. Mutation operator is inspired from
the evolutionary algorithms in which each ant in the pop-
ulation will be given the chance to be altered based on a
predefined probability. This operator may help the ant colony
algorithm to explore new areas in the search space. It can be
applied by randomly exchanging the position of two cities in
the tour which leads to generate a new solution that is not
very far from the original one. Algorithm 3 shows the main
steps of the mutation operation.

3.4. The Proposed Algorithm. In this section, a new algorithm
called annealing elitist ant system with mutation operator
and local search for solving the traveling salesman problem
is introduced. Given # cities in TSP instance, first, the elitist
ant system will generate the initial population with m ants
and each ant will randomly choose a city as its starting
city. The pheromone intensity level between any two cities
is initialized with small positive constant s,. The iteration
counter, which will record the number of iterations the
proposed algorithm executes so far, is initially set to zero.
For every interval i during the execution of the algorithm,
where i is a predefined number, the elitist ant system will
call either simulated annealing or mutation operation, based
on the diversity of the elitist ant system, to enhance the
algorithm performance. If the diversity is greater than 0.5,
the algorithm needs intensification which can be achieved by
applying simulated annealing for ratio of the solutions pool.
On the contrary, if the diversity is less than 0.5, it means
that the algorithm will lose the diversity and may get stuck
in the local minima. Therefore, the ant algorithm needs to
increase the diversity by applying the mutation operator with
a predefined probability. The diversity between the fitness of
the ants in the population was measured by calculating the
Euclidean Distance (ED) as shown in

d-d_.
ED: min , 6
I (6)

max ~ “%min

where d is the average distance between the fitness of the best
ant and the fitness of the remaining ants in the population.
d.., and d,, ., are the distances of the worst ant fitness and the
second best ant fitness from the fitness of best ant respectively
[38]. ED has a range of values between 0 and 1. If ED is low,
most ants in the population are concentrating around the best
ant and so the convergence is achieved. If ED is high, most of
the ants are not biased towards the current best ant. Therefore,
ED gives a description for the population variation and the
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1 begin
output: P, ,
(2) P,,; — Create_Heuristic_Solution(Problem_Size);
(3) Pbest .. — (S,);
(4) « InitializePheromone(Pbest ,);
(5) while (- Stop_Condition()) do
(6) Candidates < 0;
(7) for (i =1 To m) do
(8) S; « ProbabilisticStepwiseConstruction(Pheromone, ProblemsSize, «, f3);
9) Sios — Cost(S;);
(10) if (Si g < Pbest.,) then
1) Pbest . — Sicoqs
(12) Pbest — si;
(13) end
(14) Candidates « S;;
(15) end
(16) DecayPheromone (Pheromone, p);
17) for (S; € Candidates) do
(18) UpdatePheromone (Pheromone, S;, Si);
(19) end
(20) end
(21) return (P,,,)
(22) end

AvLGoriTHM I: Pseudocode for ant system.

(2) begin

(17) end

(1) Simulated_Annealing( )

(3) Solution = InitialSolution;

(4) Cost = Evaluate(Solution);

(5)  Temperature = InitialTemperature;

(6)  while (Temperature > FinalTemperature) do

7) NewSolution = Mutate(Solution);

(8) NewCost = Evaluate(NewSolution);

9) ACost = NewCost — Cost;

(10) if (ACost < 0) OR (e “Cost/Temperature 5, Rand) then
11) Cost = NewCost;

(12) Solution = NewSolution;

(13) end

(14) Temperature = codling rate x Temperature

(15) end

(16)  return the best solution;

ALGORITHM 2: Simulated annealing.

lack of similarity between ants. The following are the steps of
the proposed algorithm.

Step 1. After the initial stage mentioned above, each ant in
the population builds its tour by applying the transition rule
followed by the local pheromone update rule:

(1) Transition Rule. The ith ant decides the next city j to
be visited according to (2).

(2) Local Pheromone Update Rule. After all ants complete
their tours, the local update rule of the pheromone
trails is applied for each route according to (3).

Step 2. Calculate the route cost of each ant. After that, apply
the global pheromone update rule in which the amount of
pheromone is added to the best route which has the lowest
cost. This rule is defined in (4).

Step 3. Calculate the diversity of the population. If the diver-
sity is high, the algorithm needs intensification by applying
SA. Otherwise, the algorithm needs to regain the diversity by
applying the mutation operator.

Simulated Annealing. If the diversity value is greater than 0.5,
then the elitist ant system will use SA technique to enhance
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(1) begin

(2) Step 1: For ant A, generating mutation position
random as k3

(3) Step 2;

(4) if (k, = n) then

(5) k,=1

(6) else

(7) ky=k+1

(8) end

9) Step 3: Exchanging A, and A ;

(10) Step 4: Getting new ant A';

(11) end

ALrGorITHM 3: The pseudocode for applying the mutation operator
for TSP problem.

the selected ant by encoding its tour reached by the ant system
into SA. Here, the tour of the selected ant is encoded as the
initial state of SA. Initialize the system temperature to Tj. In
SA, two bits in the ant A are randomly selected for exchange
to generate a new mutate ant A’ and its energy (cost) is eval-
uated accordingly. If the energy of ant A’ is better than that
of ant A or a random number generated between 0 and 1 is
less than the Boltzmann factor as defined by (5), then the new
ant A’ is accepted. Otherwise, the ant A remains unchanged.
Reduce the temperature by annealing schedule or by factor
0.0 < a < 1.0. Iteratively, this process will be repeated until
T, reaches to a predefined low temperature. If tour path of
ant A’ is better than that of A, then the enhanced ant A’ is
included in the ants population. Otherwise, the ant A remains
unchanged and is placed back into the ants population.

Mutation Operator. To maintain the diversity of the proposed
algorithm, the mutation operator is introduced for further
exploration of new areas of the search space. If the diversity
value is less than 0.5, then the elitist ant system will use the
mutation operation to enhance the selected ant. In this proc-
ess, an ant is selected randomly with a predefined probability.
If a random number between 0 and 1 is less than the pre-
defined mutation rate, then the algorithm selects an ant to
mutate. Two bits in the ant A are selected randomly for
exchange to generate a new mutate ant A’ and calculate its
tour.

Step 4. Apply the local search procedure for further enhance-
ment.

Step 5. Again, apply the global pheromone update rule
according to (4).

Step 6. If the termination condition is satisfied, then return
the best route with its length. Otherwise, go to Step 1. Figure 1
shows the flowchart of the proposed algorithm.

4. Experimental Results and Discussion

The experimental results to examine the validity and the
performance of the proposed algorithm were introduced

Generate population of N ants and put the initial pheromone
on each edge

A

Every ant completes its traveling sequence of cities using the

transition rules and the local pheromone update operation

!

Evaluate the rout length of each ant in each group and perform global

pheromone update operation

Yes
diversity
is high

Apply mutation Apply simulated

operation

—

Apply local search procedure. Evaluate the route length of each ant.

annealing algorithm

Perform global pheromone update operation

Maximum
number of
generations is
reached?

No

FIGURE 1: The flowchart of the proposed method algorithm.

in this section. The experiments were conducted using 24
TSP standard benchmark problems, with different length,
from TSPLIB [39, 40]. The proposed algorithm has been
implemented in Java on an Intel Core-i7 PC. The Object
Oriented Paradigm (OOP) and different data structures
have been used to optimize its code. All experiments were
conducted on the symmetric TSP.

As in other metaheuristic algorithms, the quality of the
solutions created by the proposed algorithm was affected
largely by the different values of the parameters. Thus, a
number of different alternative values were examined to
tune the parameters of the proposed algorithm. Table 1
provides the parameters which show variations in the range
of values while default values of other parameters were
taken. Finally, the selected parameter values are those that
achieved the best computational results with respect to the
quality of the solution. All of the parameter values have been
determined by the experiments on Eil5], 1in318, and 11400
TSP instances which represent small, medium, and large
instances, respectively. In these experiments, the proposed



6
TABLE 1: Parameter setting of the proposed algorithm.

Proposed

algorithm Tested values Optimum value
parameters

o 12345 lor2
o 13579 579

P 0.01 0.05 0.1 0.5 0.7 0.1 or less
o 0.01 0.05 0.1 0.50.7 0.05
Number of ants 25 50 75 100 25

Q 50100 500 100
SA Temp. 1001000 5000 10000 1000
SA Alpha 0.5 0.7 0.9 0.99 0.99
Mutation rate 0.001 0.01 0.1 0.5 0.1

algorithm was stopped when reaching the optimal solution or
1000 iterations. The optimum combinations of the parameters
are shown in Table 1. Afterward, the algorithm was initialized
with a population of 25 ants using « = 1l and f§ = 5
which control the influence of pheromone trail and heuristic
information (edge cost) in selection of the next city by
transition rule. The parameter g, was set to 0.05 which
specifies the intensification/diversification rate. The initial
value of the pheromone trail was set to be 7, = 0.5 and the
maximum number of iteration was 1000 iterations.

All of the instances included in TSPLIB have already been
examined in the literature and their optimality results can be
used to compare algorithms according to the best and the
average values. Different instances with different size were
selected. These instances can be classified into three groups
based on their lengths. The first group is the smallest group
which includes 8 instances varying in length between 51 and
100 cities. The second is the medium group which includes
10 instances varying in length between 101 and 318 cities. The
third is the large-scale group which includes 5 instances with
length between 575 and 1655 cities. Therefore, the results were
collected after conducting the experiments 10 times for each
instance and took the best results, the average results, and
the standard deviation for comparison with previous work.
Two different experiments were conducted for the evaluation.
Both of them were configured according to the parameters
setting as shown in Table 1.

In the first experiment, the proposed algorithm was
compared with the basic elitist ant system algorithm (EAS).
Six evaluation measures were used to evaluate both algo-
rithms. These measures are best solution, worst solution,
average solution, standard deviation, number of iterations,
and running time of algorithms. Table 2 shows the superi-
ority of the proposed algorithm over EAS in computational
results for all evaluation measures. As can be seen from
the tabulated values, the quality of the solutions obtained
by the proposed algorithm was significantly better than the
solutions obtained by EAS. This superiority of the proposed
algorithm may be attributed to the introduction of SA which
exploited the detected promising solutions to speed up the
learning capability of the algorithm. Meanwhile, the addition
of the mutation operator enhanced global search capability
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of the algorithm, prevented it from being trapped in local
optima, and thus improved its performance. Moreover, the
introduction of the local search strategy increased the speed
of algorithm convergence.

Figure 2 shows the behavior of the proposed algorithm
with three TSP instances. They were chosen to represent
short, medium, and large instances, and as such, the findings
can be generalized to the other instances.

Figure 2(a) shows the results from a single run for
korB200 instance. In this instance, the proposed algorithm
reached the optimal solution that is 29437 in all ten runs.
This figure depicts best, average, and worst solution obtained
during the run. Strong optimization capability of proposed
algorithm could be inferred. Diversified solutions, high con-
vergence speed, and stagnation avoidance can be observed
from the convergence behavior of the algorithm. Specifically,
the figure shows how quickly the optimal solution, that is
29437, was found after 26 iterations. The trend goes down
fast towards the optimum solution in the early iterations
until it approaches the optimum solution. It is clear that no
stagnation happened during the search process as observed
from the figure.

Figure 2(b) illustrates the results from a single run of the
proposed algorithm for the 1in318 instance. In nine out of ten
runs, the proposed algorithm reached the optimal solution
that is 42029. This figure presents the graph which shows the
convergence behavior of the algorithm. It is clearly noticed
that the proposed algorithm has high convergence speed with
diversified solutions. The algorithm succeeded in avoiding
the potential stagnation and premature convergence as can
be observed from the convergence behavior of the algorithm.
According to the figure, there is no stagnation happened
during the search process. Additionally, the algorithm con-
verged to the best solution after a maximum of 106 iterations.
The search space for this instance is medium although the
algorithm has no problem in quickly finding the optimum
solution.

Figure 2(c) demonstrates a single run for rl1323 instance
containing 1323 cities. This graph plots the convergence
behavior of the proposed algorithm over 1000 iterations.
The algorithm reached a solution with cost near to optimal
solution at iteration number 293 and never once changed
afterwards. As it can be seen from the figure, in the initial
stage, the diversity was high due to the variation of the popu-
lation. However, as fitness function decreased, the diversity
also decreased until the suboptimal solution was attained
that is 270388. This smooth convergence was due to the
good balance between diversification and intensification that
proposed algorithm could provide. Although the search space
for that instance was large, no stagnation happened during
the search process.

In the second experiment, the proposed algorithm was
compared with four state-of-the-art metaheuristic algo-
rithms: Chen and Chien [27], Wang et al. [41], Yousefikhosh-
bakht et al. [32], and Mahi et al. [31]. The authors of these
algorithms proved that their algorithms outperformed the
other algorithms in the literature. The best found solution,
the average one over all runs, the standard deviation, the
percentage deviation of the best results, and the percentage
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TABLE 2: Results obtained by the EAS and the proposed algorithm for the test problems according to the best solution, worst solution, average
solution, standard deviation, number of iterations, and running time of algorithms.

Instance Opt. Method Best Worst Average Std. dev. Iteration Time (s)
cil51 426 EAS 430 474 442.3 14.38 999 0.01
Proposed 426 449 426 0.00 2 0.00
cil76 538 EAS 547 653 563.9 13.25 999 0.02
Proposed 538 566 538 0.00 2 0.01
cill01 629 EAS 661 778 6771 9.27 999 0.04
Proposed 629 667 629 0.00 3 0.02
berlin52 7542 EAS 7633 10674 7816.9 141.35 999 0.01
Proposed 7542 10804 7542 0.00 3 0.06
bierl27 118282 EAS 121978 151016 125064.1 1866.12 999 0.07
Proposed 118282 153876 118282 0.00 4 0.05
h130 6110 EAS 6386 7757 6515.3 83.80 999 0.07
Proposed 6110 6519 6110 0.00 4 0.05
h150 6528 EAS 6734 7771 6865.5 101.49 999 0.07
Proposed 6528 6937 6528 0.00 3 0.03
£d100 7910 EAS 8240 10161 8422.2 151.46 999 0.04
Proposed 7910 8540 7910 0.00 2 0.01
linl05 14379 EAS 14756 18010 15102.3 278.80 999 0.02
Proposed 14379 15315 14379 0.00 2 0.01
lin318 42029 EAS 44981 58151 46293.6 917.35 999 1.42
Proposed 42029 43715 42042.4 42.37 12 0.54
kroA100 21282 EAS 22085 29227 22603.8 450.09 999 0.04
Proposed 21282 23228 21282 0.00 2 0.01
KroA150 26524 EAS 27560 31282 28370 504.96 999 0.12
Proposed 26524 27793 26524 0.00 4 0.05
kroA200 29368 EAS 31499 41604 31886.1 249.14 999 0.11
Proposed 29368 30829 29368 0.00 9 0.20
krobl00 29141 EAS 22652 27908 23134.8 281.92 999 0.04
Proposed 22141 28127 22141 0.00 2 0.01
krob150 26130 EAS 27248 34550 28099.5 512.53 999 0.14
Proposed 26130 27556 26130 0.00 2 0.02
krob200 29437 EAS 31054 38684 32019 559.76 999 0.23
Proposed 29437 31024 29437 0.00 11 0.24
krocl00 20749 EAS 21194 22485 21777.8 348.02 999 0.03
Proposed 20749 26834 20749 0.00 2 0.01
Kkrod100 21294 EAS 22205 29101 22872.5 457.97 999 0.03
Proposed 21294 22627 21294 0.00 3 0.02
kroel00 22068 EAS 22699 31216 23460.4 486.84 999 0.07
Proposed 22068 23078 22068 0.00 2 0.01
rats75 6773 EAS 7365 8398 7436.6 72.57 999 9.11
Proposed 6777 6986 6787.1 10.13 999 46.23
rat785 3806 EAS 9706 12596 9860.8 128.84 999 26.79
Proposed 8811 9086 8829.7 15.02 999 66.85
1323 270199 EAS 297599 392473 304626.9 5122.59 999 110.29
Proposed 270309 287323 270841.7 403.43 999 194.62
11400 20127 EAS 22432 43829 23669.5 820.80 999 93.12
Proposed 20194 29176 20233.4 26.01 999 34.24
41655 62128 EAS 68182 92988 71629.3 1905.70 999 33.58

Proposed 62291 68922 62457.5 90.39 999 199.58
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FIGURE 2: The performance of the proposed algorithm with three TSP instances representing short, medium, and large instances.

deviation of the average results were used as evaluation
measures for the comparison. The results are presented in
Tables 3 and 4 and Figure 3.

In Tables 3 and 4, column 1 shows the TSP instances,
column 2 shows the best known solutions, column 3 shows
the algorithms, column 4 shows the best solutions over all
runs, column 5 shows the average solution of all runs, column
6 presents the standard deviation, column 7 reveals the
percentage deviation of the best results (PD_Best) compared
to those of the best known solution, and column 8 reveals
the percentage deviation of the average of the best solution of
all runs (PD_Avg) in comparison to the best known solution.

PD_Best was calculated by (7) and PD_Avg was calculated by
(8).

(bestsolution — bestknownsolution)
bestknownsolution

PD_Best =

(7)
x 100,

avgsolution — bestknownsolution

PD_Avg =

100. (8)

bestknownsolution

In Table 3, the proposed algorithm was compared with
Chen and Chien [27] and Wang et al. [41] on 24 benchmark
instances with cities from 51 to 1655. As can be seen in
Table 3, for the 24 TSP instances, the proposed algorithm was
much better than both algorithms on all medium and large
instances, such as 1in318, rat575, rat783, rl1323, {11400, and
d1655, with respect to the five evaluation measures mentioned
above. There was no significant difference between the pro-
posed algorithm, Chen and Chien [27] and Wang et al. [41]
on the small instances with cities less than or equal to 100,
with respect to best found solution and PD_Best.

In Table 4, the proposed algorithm was compared with
Yousefikhoshbakht et al. [32] and Mahi et al. [31] on 15
and 8 benchmark instances, respectively, with cities from
51 to 200 as reported in their studies. As can be seen in
Table 4, the values of columns best and PD_Best show that
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TABLE 3: A comparison of the proposed algorithm with Chen and Chien [27] and Wang et al. [41] according to the best solution, average
solution, standard deviation, the percentage deviation of the average solution (PD_Avg), and the percentage deviation of the best solution

(PD_Best) found by the algorithms.

Instance Opt. Method Best Average Std. dev. PD_Best PD_Avg
Proposed algorithm 426 426 0.000 0.000 0.000
eil51 426 Chen and Chien [27] 427 42727 0.450 0.235 0.298
Wang et al. [41] 426 426 N/A 0.000 0.000
Proposed algorithm 538 538 0.000 0.000 0.000
eil76 538 Chen and Chien [27] 538 540.2 2.940 0.000 0.409
Wang et al. [41] 538 538 N/A 0.000 0.000
Proposed algorithm 629 629 0.000 0.000 0.000
eill01 629 Chen and Chien [27] 630 635.23 3.590 0.159 0.990
Wang et al. [41] 629 629 N/A 0.000 0.000
Proposed algorithm 7542 7542 0.000 0.000 0.000
berlin52 7542 Chen and Chien [27] 7542 7542 0.000 0.000 0.000
Wang et al. [41] 7542 7542 N/A 0.000 0.000
Proposed algorithm 118282 118282 0.000 0.000 0.000
bier127 118282 Chen and Chien [27] 118282 119421.8 580.830 0.000 0.964
Wang et al. [41] 118282 118282 0.000 0.000
Proposed algorithm 6110 6110 0.000 0.000 0.000
ch130 6110 Chen and Chien [27] 6141 6205.63 43.700 0.507 1.565
Wang et al. [41] 6110 6112.4 0.000 0.039
Proposed algorithm 6528 6528 0.000 0.000 0.000
ch150 6528 Chen and Chien [27] 6528 6563.7 22.450 0.000 0.547
Wang et al. [41] 6528 6531.84 N/A 0.000 0.059
Proposed algorithm 7910 7910 0.000 0.000 0.000
rd100 7910 Chen and Chien [27] 7910 798757 62.060 0.000 0.981
Wang et al. [41] 7910 7910 N/A 0.000 0.000
Proposed algorithm 14379 14379 0.000 0.000 0.000
lin105 14379 Chen and Chien [27] 14379 14406.37 37.280 0.000 0.190
Wang et al. [41] 14379 14379 N/A 0.000 0.000
Proposed algorithm 42029 42042.4 42.375 0.000 0.032
lin318 42029 Chen and Chien [27] 42487 43002.9 307,510 1.090 2.317
Wang et al. [41] 42081 42204.16 N/A 0.124 0.417
Proposed algorithm 21282 21282 0.000 0.000 0.000
kroA100 21282 Chen and Chien [27] 21282 21370.47 123.360 0.000 0.416
Wang et al. [41] 21282 21284.24 N/A 0.000 0.011
Proposed algorithm 26524 26524 0.000 0.000 0.000
kroA150 26524 Chen and Chien [27] 26524 26899.2 133.020 0.000 1.415
Wang et al. [41] 26524 26528.12 N/A 0.000 0.016
Proposed algorithm 29368 29368 0.000 0.000 0.000
kroA200 29368 Chen and Chien [27] 29383 29738.73 356.070 0.051 1.262
Wang et al. [41] 29368 29374.84 N/A 0.000 0.023
Proposed algorithm 22141 22141 0.000 0.000 0.000
kroB100 22141 Chen and Chien [27] 22141 22282.87 183.990 0.000 0.641
Wang et al. [41] 22141 22186.28 N/A 0.000 0.205
Proposed algorithm 26130 26130 0.000 0.000 0.000
kroB150 26130 Chen and Chien [27] 26130 26448.33 266.760 0.000 1.218
Wang et al. [41] 26130 26133.2 N/A 0.000 0.012
Proposed algorithm 29437 29437 0.000 0.000 0.000
kroB200 29437 Chen and Chien [27] 29541 30035.23 357.480 0.353 2.032
Wang et al. [41] 29437 29439.64 N/A 0.000 0.009
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TaBLE 3: Continued.
Instance Opt. Method Best Average Std. dev. PD_Best PD_Avg
Proposed algorithm 20749 20749 0.000 0.000 0.000
kroC100 20749 Chen and Chien [27] 20749 20878.97 158.640 0.000 0.626
Wang et al. [41] 20749 20749 N/A 0.000 0.000
Proposed algorithm 21294 21294 0.000 0.000 0.000
kroD100 21254 Chen and Chien [27] 21309 21620.47 226.600 0.070 1.533
Wang et al. [41] 21294 212972 N/A 0.000 0.015
Proposed algorithm 22068 22068 0.000 0.000 0.000
kroE100 22068 Chen and Chien [27] 22068 22183.47 103.320 0.000 0.523
Wang et al. [41] 22068 2207552 N/A 0.000 0.034
Proposed algorithm 6777 6787.1 10.126 0.059 0.208
rat575 6773 Chen and Chien [27] 6891 6933.87 27.620 1.742 2375
Wang et al. [41] 6807 6830.88 N/A 0.502 0.855
Proposed algorithm 8811 8829.7 15.019 0.057 0.269
rat783 8806 Chen and Chien [27] 8988 9079.23 52.690 2.067 3.103
Wang et al. [41] 8859 8877.92 N/A 0.602 0.817
Proposed algorithm 270309 270841.7 403.434 0.041 0.238
111323 270199 Chen and Chien [27] 277642 2801815 1761.660 2.755 3.694
Wang et al. [41] 270919 271481.6 N/A 0.266 0.475
Proposed algorithm 20194 20233.4 26.014 0.333 0.529
fl1400 20127 Chen and Chien [27] 20593 21349.63 527.880 2315 6.075
Wang et al. [41] 20314 20428.48 N/A 0.929 1.498
Proposed algorithm 62291 62457.5 90.388 0.262 0.530
d1655 62128 Chen and Chien [27] 64151 6562113 1031.940 3.256 5.622
Wang et al. [41] 62463 62670.52 N/A 0.539 0.873

there was no significant difference between the proposed
algorithm and Yousefikhoshbakht et al. [32] on the small
instances with cities less than or equal to 100. For the larger
instances, the proposed algorithm gained much better results
than Yousefikhoshbakht et al. [32]. Comparing with Mahi et
al. [31], the proposed algorithm achieved better results in all
the 8 instances with respect to best found solution, average
solution, PD_Best, and PD_Avg.

Figure 3 shows a comparison of the proposed algorithm
to Chen and Chien [27] and Wang et al. [41] based on the per-
centage deviations of the average solution to the best known
solution. It is clear that the proposed algorithm significantly
gained smaller percentage deviations than Chen and Chien
[27] and Wang et al. [41] in the large-scale TSP instances that
is 1in318, rat575, rat783, rl1323, fl1400, and d1655.

In summary, numerical results show that the proposed
algorithm was effective. It was able to solve small and large
size instances better than the existing algorithms. This is
because of the proposed algorithm capability of searching the
optimal solution until the last iterations without stagnation
or premature convergence, especially for the medium and
large TSP instances, compared to the other algorithms. In

S = N W R NN

rl1323 11400  d1655

lin318

rat575 rat783

B Proposed algorithm
m Chen and Chien [27]
Wang et al. [41]

FIGURE 3: Percentage deviations of the average solution to the best
known solution of the large-scale TSP instances for the proposed
algorithm and the other algorithms.

general, the results indicate that the structure of the proposed
algorithm, which depends on the concepts of embedding
simulated annealing, mutation operation, and local search
procedure, achieved the balance between diversification and
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TABLE 4: A comparison of the proposed algorithm with Yousefikhoshbakht et al. [32] and Mabhi et al. [31] according to the best solution,
average solution, standard deviation, the percentage deviation of the average solution (PD_Avg), and the percentage deviation of the best
solution (PD_Best) found by the algorithms.

Instance Opt. Method Best Average Std. dev. PD_Best PD_Avg

Proposed algorithm 426 426 0.000 0.000 0.000

eil51 426 Yousefikhoshbakht et al. [32] 126 N/A N/A 0.000 N/A
Mabhi et al. [31] N/A 426.45 0.610 N/A 0.106
Proposed algorithm 538 538 0.000 0.000 0.000

eil76 538 Yousefikhoshbakht et al. [32] 538 N/A N/A 0.000 N/A
Mahi et al. [31] N/A 538.3 0.470 N/A 0.056
Proposed algorithm 629 629 0.000 0.000 0.000

eill01 629 Yousefikhoshbakht et al. [32] 629 N/A N/A 0.000 N/A
Mabhi et al. [31] N/A 632.7 2.120 N/A 0.588

Proposed algorithm 7542 7542 0.000 0.000 0.000

berlin52 7542 Yousefikhoshbakht et al. [32] 7542 N/A N/A 0.000 N/A
Mahi et al. [31] N/A 7543.2 2.370 N/A 0.016

chi50 6528 Proposed algorithm 6528 6528 0.000 0.000 0.000
Mabhi et al. [31] N/A 6563.95 27.580 N/A 0.551

Proposed algorithm 14379 14379 0.000 0.000 0.000

lin105 14379 Yousefikhoshbakht et al. [32] 14379 N/A N/A 0.000 N/A
Mahi et al. [31] N/A 14379.15 0.480 N/A 0.001

lin318 42029 Proposed algorithm 42029 42042.4 42.375 0.000 0.032
Yousefikhoshbakht et al. [32] 42543 N/A N/A 1.223 N/A

Proposed algorithm 21282 21282 0.000 0.000 0.000

kroA100 21282 Yousefikhoshbakht et al. [32] 21282 N/A N/A 0.000 N/A
Mabhi et al. [31] N/A 21445.1 78.240 N/A 0.766

KkroA150 26524 Proposed algorithm 26524 26524 0.000 0.000 0.000
Yousefikhoshbakht et al. [32] 26611 N/A N/A 0.328 N/A

Proposed algorithm 29368 29368 0.000 0.000 0.000

kroA200 29368 Yousefikhoshbakht et al. [32] 29368 N/A N/A 0.000 N/A
Mabhi et al. [31] N/A 29646.05 114.710 N/A 0.947

KroB100 2141 Proposed algorithm 22141 22141 0.000 0.000 0.000
Yousefikhoshbakht et al. [32] 22141 N/A N/A 0.000 N/A

KroBI50 26130 Proposed algorithm 26130 26130 0.000 0.000 0.000
Yousefikhoshbakht et al. [32] 26202 N/A N/A 0.276 N/A

kroB200 29437 Proposed algorithm 29437 29437 0.000 0.000 0.000
Yousefikhoshbakht et al. [32] 29509 N/A N/A 0.245 N/A

kroC100 20749 Proposed algorithm 20749 20749 0.000 0.000 0.000
Yousefikhoshbakht et al. [32] 20754 N/A N/A 0.024 N/A

KkroD100 21294 Proposed algorithm 21294 21294 0.000 0.000 0.000
Yousefikhoshbakht et al. [32] 21335 N/A N/A 0.193 N/A

Proposed algorithm 22068 22068 0.000 0.000 0.000

kroE100 22068
Yousefikhoshbakht et al. [32] 22068 N/A N/A 0.000 N/A
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intensification and enabled algorithm to escape from local
optima and speed up the convergence. These gave the pro-
posed algorithm the superiority over the other algorithms in
reaching the suboptimal/optimal solutions for TSP problems.

5. Conclusion

In this paper, a new hybridized metaheuristic algorithm,
called annealing elitist ant system with mutation operator
for traveling salesman problem, has been introduced. Exper-
iments were conducted using 24 data sets obtained from
the TSPLIB and the experimental findings of the proposed
algorithm were compared with different state-of-the-art algo-
rithms. The results illustrate that the proposed algorithm
outperforms other algorithms and has smaller percentage
deviations in comparison to Chen and Chien [27], Wang et
al. [41], Yousefikhoshbakht et al. [32], and Mahi et al. [31]
algorithms. For future work, the proposed hybrid algorithm
can be enhanced by using adaptive parameter on-the-fly or
tuning using fuzzy logic. In addition, further evaluation of
the performance of the proposed hybrid algorithm can be
done using asymmetric TSP. For generalization, the proposed
algorithm can be applied for different optimization problems.
Another enhancement can be introduced by implementing a
parallel version of this algorithm.
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